Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3,3,5-Tetramethyl-1*H*-1,5-benzodiazepine-2,4(3*H*,5*H*)-dione

Rachida Dardouri,^a Youssef Kandri Rodi,^a Natalie Saffon,^b El Mokhtar Essassi^c and Seik Weng Ng^d*

^aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques Université Sidi Mohamed Ben Abdallah, Fés, Morocco, ^bService Commun Rayons-X FR2599, Université Paul Sabatier, Bâtiment 2R1, 118 route de Narbonne, Toulouse, France, ^cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 27 February 2011; accepted 28 February 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.108; data-to-parameter ratio = 17.2.

The seven-membered ring in the title compound, $C_{13}H_{16}N_2O_2$, adopts a boat-shaped conformation (with the C atoms of the fused-ring as the stern and the C atom bearing two methyl groups) as the prow.

Related literature

For the crystal structure of 1,5-dimethyl-1,5-benzodiazepin-2,4-dione, see: Mondieig *et al.* (2005).

Experimental

Crystal data

N a

h

$C_{13}H_{16}N_2O_2$	V = 1178.26 (4) Å ³
$A_r = 232.28$	Z = 4
Aonoclinic, $P2_1/c$	Mo $K\alpha$ radiation
= 7.5112 (1) Å	$\mu = 0.09 \text{ mm}^{-1}$
= 10.1731 (2) Å	T = 295 K
= 15.8697 (3) Å	$0.32 \times 0.20 \times 0.18 \text{ mm}$
$B = 103.675 \ (1)^{\circ}$	

Data collection

Refinement

2719 reflections

S = 1.04

 $R[F^2 > 2\sigma(F^2)] = 0.039$ wR(F²) = 0.108

Bruker X8 APEXII diffractometer 20993 measured reflections 2719 independent reflections 2130 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.042$

 $\begin{array}{l} 158 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.26 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{min} = -0.20 \text{ e } \text{ Å}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Université Sidi Mohamed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5483).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Mondieig, M., Négrier, Ph., Léger, J. M., Benali, B., Lazar, Z., Elassyry, A., Jarmouni, C., Lakhrissi, B. & Massoui, M. (2005). Anal. Sci. X-Ray Struct. Anal. Online, 21, x145–x146.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, o783 [doi:10.1107/S1600536811007501]

1,3,3,5-Tetramethyl-1*H*-1,5-benzodiazepine-2,4(3*H*,5*H*)-dione

R. Dardouri, Y. K. Rodi, N. Saffon, E. M. Essassi and S. W. Ng

Comment

The methylene part of 1,5-dimethyl-1,5-benzodiazepine-2,4-dione is relatively acidic, and one proton can be abstracted by using potassium *t*-butoxide; the resulting carbanion can undergo a nucleophilic subsitution with haloalkane to form 3-substituted derivatives. Previous studies have largely described the mono-substituted derivatives only. 1,12-Dibromodocane yielded the mono-substituted 12-bromodeyl derivative. In this study, the compound is reacted with methyl iodide to yield the di-methylated compound (Scheme I). The seven-membered ring adopts a boat-shaped conformation (with the C atoms of the fused-ring as the stern and the C atom bearing two methyl groups) as the prow (Fig. 1). The methyl group occupying the axial position hovers over the seven-membered ring, and the methyl group appears to be stopped from tipping over because of the π -system of the phenylene ring (Fig. 2).

Experimental

To a solution of the potassium *t*-butoxide (0.42 g, 3.6 mmol) in DMF (15 ml) was added 1,5-dimethyl-1,5-benzodiazepine-2,4-dione (0.50 g, 2.4 mmol) and methyl iodide (0.68 g, 4.80 mmol). Stirring was continued for 24 h. The reaction was monitored by thin layer ch romatography. The mixture was filtered and the solution evaporated to give colorless crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2-1.5U_{eq}(C)$.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{13}H_{16}N_2O_2$ at the 50% probability level; hydrogen atoms are drawn as arbitrary radius.

Fig. 2. Thermal ellipsoid plot (Barbour, 2001) showing van der Waals surfaces for the carbon atoms of the phenylene ring as well as the van der Waals surface for one of the methyl hydrogen atoms.

1,3,3,5-Tetramethyl-1*H*-1,5-benzodiazepine-2,4(3*H*,5*H*)-dione

Crystal data

$C_{13}H_{16}N_2O_2$	F(000) = 496
$M_r = 232.28$	$D_{\rm x} = 1.309 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo Ka radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4653 reflections
a = 7.5112(1) Å	$\theta = 2.4 - 32.5^{\circ}$
b = 10.1731 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 15.8697 (3) Å	T = 295 K
$\beta = 103.675 \ (1)^{\circ}$	Block, colorless
$V = 1178.26 (4) \text{ Å}^3$	$0.32\times0.20\times0.18~mm$
Z = 4	

Data collection

Bruker X8 APEXII diffractometer	2130 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.042$
graphite	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
ϕ and ω scans	$h = -9 \rightarrow 9$
20993 measured reflections	$k = -13 \rightarrow 13$
2719 independent reflections	$l = -20 \rightarrow 20$
	1 20 20

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.108$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 0.280P]$ where $P = (F_o^2 + 2F_c^2)/3$
2719 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
158 parameters	$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.16162 (14)	0.16773 (10)	0.73262 (7)	0.0395 (3)
O2	0.56946 (14)	0.16400 (10)	0.59503 (7)	0.0400 (3)
N1	0.25294 (15)	0.37740 (11)	0.72907 (7)	0.0288 (3)
N2	0.54245 (14)	0.37284 (11)	0.63540 (7)	0.0275 (2)

C1	0.29905 (16)	0.49020 (12)	0.68579 (8)	0.0253 (3)
C2	0.20477 (18)	0.60726 (13)	0.68935 (9)	0.0307 (3)
H2	0.1123	0.6096	0.7193	0.037*
C3	0.24611 (19)	0.71969 (14)	0.64933 (9)	0.0327 (3)
Н3	0.1835	0.7974	0.6535	0.039*
C4	0.38090 (19)	0.71718 (13)	0.60286 (9)	0.0328 (3)
H4	0.4079	0.7924	0.5750	0.039*
C5	0.47450 (18)	0.60146 (13)	0.59851 (9)	0.0303 (3)
H5	0.5643	0.5994	0.5670	0.036*
C6	0.43742 (16)	0.48743 (12)	0.64028 (8)	0.0250 (3)
C7	0.2047 (2)	0.39958 (15)	0.81279 (9)	0.0351 (3)
H7A	0.2283	0.3211	0.8472	0.053*
H7B	0.0771	0.4217	0.8027	0.053*
H7C	0.2771	0.4704	0.8430	0.053*
C8	0.22299 (17)	0.25474 (13)	0.69423 (9)	0.0289 (3)
C9	0.26599 (18)	0.22616 (13)	0.60544 (9)	0.0313 (3)
C10	0.47116 (18)	0.25147 (13)	0.61116 (8)	0.0288 (3)
C11	0.73932 (18)	0.39067 (15)	0.64072 (10)	0.0350 (3)
H11A	0.8050	0.3139	0.6661	0.052*
H11B	0.7832	0.4660	0.6760	0.052*
H11C	0.7582	0.4038	0.5836	0.052*
C12	0.13980 (19)	0.30489 (16)	0.53176 (9)	0.0371 (3)
H12A	0.1699	0.2846	0.4777	0.056*
H12B	0.1566	0.3973	0.5433	0.056*
H12C	0.0144	0.2818	0.5284	0.056*
C13	0.2302 (2)	0.07970 (15)	0.58570 (12)	0.0487 (4)
H13A	0.3049	0.0282	0.6313	0.073*
H13B	0.2599	0.0586	0.5317	0.073*
H13C	0.1033	0.0606	0.5817	0.073*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
01	0.0423 (6)	0.0378 (6)	0.0421 (6)	-0.0102 (4)	0.0170 (5)	0.0065 (4)
O2	0.0431 (6)	0.0331 (5)	0.0469 (6)	0.0082 (4)	0.0170 (5)	-0.0008 (4)
N1	0.0306 (6)	0.0327 (6)	0.0261 (5)	-0.0038 (4)	0.0128 (5)	0.0013 (4)
N2	0.0234 (5)	0.0299 (6)	0.0312 (6)	0.0015 (4)	0.0104 (4)	0.0019 (4)
C1	0.0250 (6)	0.0291 (6)	0.0226 (6)	-0.0028 (5)	0.0071 (5)	0.0006 (5)
C2	0.0272 (6)	0.0367 (7)	0.0305 (7)	0.0017 (5)	0.0111 (5)	-0.0016 (5)
C3	0.0329 (7)	0.0306 (7)	0.0347 (7)	0.0053 (5)	0.0079 (6)	-0.0004 (5)
C4	0.0375 (7)	0.0294 (7)	0.0323 (7)	-0.0014 (5)	0.0096 (6)	0.0042 (5)
C5	0.0298 (6)	0.0344 (7)	0.0299 (6)	-0.0017 (5)	0.0134 (5)	0.0027 (5)
C6	0.0232 (6)	0.0285 (6)	0.0237 (6)	-0.0003 (5)	0.0064 (5)	-0.0002 (5)
C7	0.0373 (7)	0.0449 (8)	0.0271 (7)	-0.0061 (6)	0.0156 (6)	-0.0004 (6)
C8	0.0243 (6)	0.0331 (7)	0.0300 (6)	-0.0028 (5)	0.0077 (5)	0.0030 (5)
C9	0.0333 (7)	0.0306 (7)	0.0313 (7)	-0.0053 (5)	0.0106 (5)	-0.0029 (5)
C10	0.0326 (7)	0.0302 (7)	0.0252 (6)	0.0036 (5)	0.0102 (5)	0.0039 (5)
C11	0.0241 (6)	0.0429 (8)	0.0401 (8)	0.0028 (5)	0.0119 (6)	0.0001 (6)

supplementary materials

C12	0.0315 (7)	0.0512 (9)	0.0277 (7)	-0.0038 (6)	0.0053 (6)	-0.0045 (6)
C13	0.0576 (10)	0.0360 (8)	0.0571 (10)	-0.0134 (7)	0.0227 (8)	-0.0103 (7)
Geometric para	neters (Å, °)					
O1—C8		1.2248 (15)	C5—H	15	0.93	300
O2—C10		1.2214 (15)	С7—Н	17A	0.90	500
N1—C8		1.3619 (17)	C7—H	17B	0.90	500
N1—C1		1.4217 (15)	С7—Н	17C	0.90	500
N1—C7		1.4749 (16)	C8—0	C9	1.54	457 (18)
N2-C10		1.3645 (17)	С9—С	213	1.53	33 (2)
N2—C6		1.4199 (16)	С9—С	C10	1.54	438 (18)
N2-C11		1.4722 (16)	С9—С	212	1.54	14 (2)
C1—C2		1.3934 (18)	C11—	-H11A	0.90	500
C1—C6		1.3992 (16)	C11—	-H11B	0.90	500
С2—С3		1.3788 (19)	C11—	-H11C	0.90	500
С2—Н2		0.9300	C12—	-H12A	0.90	500
C3—C4		1.3866 (19)	C12—	-H12B	0.90	500
С3—Н3		0.9300	C12—	-H12C	0.90	500
C4—C5		1.3813 (19)	C13—	-H13A	0.90	500
C4—H4		0.9300	C13—	-H13B	0.90	500
C5—C6		1.3964 (17)	C13—	-H13C	0.90	500
C8—N1—C1		125.39 (10)	01—0	C8—N1	120	.38 (12)
C8—N1—C7		116.99 (11)	01—0	C8—C9	120	.12 (12)
C1—N1—C7		116.84 (11)	N1—0	C8—C9	119	.50 (11)
C10—N2—C6		124.90 (11)	C13—	-C9—C10	107	.37 (12)
C10—N2—C11		116.72 (11)	C13—	-C9—C12	107	.62 (12)
C6—N2—C11		117.33 (11)	C10—	-C9—C12	112	.55 (11)
C2—C1—C6		118.99 (11)	C13—	-C9—C8	107	.74 (11)
C2-C1-N1		119.09 (10)	C10—	-C9—C8	109	.63 (11)
C6-C1-N1		121.92 (11)	C12—	-C9—C8	111	.70 (11)
C3—C2—C1		121.22 (12)	02—0	C10—N2	120	.12 (12)
С3—С2—Н2		119.4	02—0	С10—С9	120	.71 (12)
С1—С2—Н2		119.4	N2—0	С10—С9	119	.16 (11)
C2—C3—C4		120.13 (13)	N2—0	C11—H11A	109	.5
С2—С3—Н3		119.9	N2—0	C11—H11B	109	.5
С4—С3—Н3		119.9	H11A-		109	.5
C5—C4—C3		119.11 (12)	N2—0	C11—H11C	109	.5
C5—C4—H4		120.4	H11A-		109	.5
C3—C4—H4		120.4	H11B-		109	.5
C4—C5—C6		121.56 (12)	С9—С	С12—Н12А	109	.5
C4—C5—H5		119.2	С9—С	С12—Н12В	109	.5
C6—C5—H5		119.2	H12A-		109	.5
C5—C6—C1		118.96 (11)	С9—С	С12—Н12С	109	.5
C5—C6—N2		118.71 (11)	H12A-		109	.5
C1-C6-N2		122.33 (11)	H12B-		109	.5
N1—C7—H7A		109.5	C9—C	С13—Н13А	109	.5
N1—C7—H7B		109.5	С9—С	С13—Н13В	109	.5
Н7А—С7—Н7В		109.5	H13A-	—С13—Н13В	109	.5

N1—C7—H7C	109.5	C9—C13—H13C	109.5
H7A—C7—H7C	109.5	H13A—C13—H13C	109.5
H7B—C7—H7C	109.5	H13B—C13—H13C	109.5
C8—N1—C1—C2	132.49 (13)	C7—N1—C8—O1	-1.24 (19)
C7—N1—C1—C2	-37.06 (17)	C1—N1—C8—C9	8.88 (19)
C8—N1—C1—C6	-48.03 (18)	C7—N1—C8—C9	178.41 (12)
C7—N1—C1—C6	142.42 (12)	O1—C8—C9—C13	-3.72 (18)
C6—C1—C2—C3	-0.31 (19)	N1-C8-C9-C13	176.63 (13)
N1—C1—C2—C3	179.18 (12)	O1—C8—C9—C10	-120.26 (13)
C1—C2—C3—C4	1.4 (2)	N1-C8-C9-C10	60.09 (16)
C2—C3—C4—C5	-1.0 (2)	O1—C8—C9—C12	114.27 (14)
C3—C4—C5—C6	-0.5 (2)	N1-C8-C9-C12	-65.38 (16)
C4—C5—C6—C1	1.5 (2)	C6—N2—C10—O2	167.89 (12)
C4—C5—C6—N2	-178.11 (12)	C11—N2—C10—O2	-0.06 (18)
C2—C1—C6—C5	-1.14 (18)	C6—N2—C10—C9	-12.78 (18)
N1—C1—C6—C5	179.38 (12)	C11—N2—C10—C9	179.28 (11)
C2—C1—C6—N2	178.50 (12)	C13—C9—C10—O2	4.75 (18)
N1—C1—C6—N2	-0.98 (18)	C12—C9—C10—O2	-113.51 (14)
C10—N2—C6—C5	-128.94 (13)	C8—C9—C10—O2	121.52 (13)
C11—N2—C6—C5	38.94 (17)	C13-C9-C10-N2	-174.59 (12)
C10-N2-C6-C1	51.42 (18)	C12-C9-C10-N2	67.16 (16)
C11—N2—C6—C1	-140.70 (12)	C8—C9—C10—N2	-57.81 (15)
C1—N1—C8—O1	-170.77 (12)		

Fig. 1

